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a b s t r a c t

Skinless bi-continuous macroporous membranes with extremely high porosity, �80%, were prepared

by the non-solvent induced phase separation (NIPS) process, from casting dopes composed of Elvamide

(co-polymer of Nylon-6, -66, and -610), chitosan, and formic acid that were immersed in a water bath

maintained at 10 1C. The Chitosan, while functioned as a pore former, migrated along with out-diffusing

formic acid into the bath during the NIPS process, thereby, breaking the top gel-layer and the

boundaries between cellular pores to yield a morphology featuring interpenetration networks of pores

and polymer host. The amount of chitosan added to the dope affected significantly the pore size and

porosity of the membranes formed, as revealed by SEM observations. At the highest chitosan/Elvamide

ratio of 0.155, very large pore size (�30 mm) and porosity (83%) were achieved, whereas at the lowest

ratio of 0.1, the membrane became asymmetric, and the pore size was reduced to �15 mm. 1H NMR

analyses indicated that chitosan was completely removed during the precipitation process. Further-

more, L929 cells were cultured on various porous membranes. It is interesting to find that this cell was

able to dwell on the pore walls in the cross sectional region, although with a smaller proliferation than

on a flat nonporous surface.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Polymeric membranes with appropriate 3-D porous structures
are extensively used in tissue engineering as scaffolds for cultur-
ing of cells [1–2]. Unlike ordinary micro- or nano-porous mem-
branes applied in various fine separation operations, the scaffold
membranes have to be skinless and are characterized by high
porosity, large pore size, and good pore–pore interconnectivity, in
addition to biocompatibility and possibly biodegradability [3].
However, successful preparation of such special kind of porous
structure is rather difficult, and is often considered as a matter of
‘art’. In fact, how to produce porous membranes suited to tissue
regenerating applications is a topic under enthusiastic explora-
tion currently.

A number of methods have been developed for the preparation
of porous membranes over the past few decades, such as phase
separation [4–9], gas foaming [10–12], 3D printing [13], porogen
leaching, etc. [14–25]. In a typical phase separation process, an
initially homogeneous polymer solution (dope) is brought to a
thermodynamically unstable state by means of contacting a non-

solvent (Non-solvent Induced Phase Separation, NIPS) or by low-
ering temperature of the dope (Thermally Induced Phase Separa-
tion, TIPS). In either case, phase separation takes place in the form
of liquid–liquid demixing and/or polymer crystallization, depend-
ing on the phase behavior and the preparative parameters, to
yield polymer-poor and polymer-rich phases. Subsequent devel-
opment of these separated phases leads to various porous
morphologies in the membrane [3,26].

For the NIPS process, addition of pore formers in the dope is a
common practice to change the pore size, pore structure, and
porosity of the membranes. Some kind of pore formers actually
involve in the phase separation process, e.g., addition of non-
solvent in the dope to induce crystallization [22,23], while others
may be quite passive, being used just to occupy temporarily a
space, which later on become pores after removal of the additives
[21,24,25]. A wide variety of materials have been shown to be
effective pore formers, such as poly(vinyl pyrrolidone) [15],
polyethylene glycol [14,15], hyper-branched polymers [14], inor-
ganic salts [16–20], silica particles [21], organically modified clays
[25], different aggregated state of water [22,23], etc. Although the
pore size and porosity can be controlled by proper application of
these pore formers [27], symmetric membranes with pores that
interconnect into networks of continuous channels are still
difficult to prepare, particularly when very large pore size (tens
of microns) and extremely high porosity (�80%) are targeted
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[28,29,31]. For example, Kim and Lee prepared symmetric poly-
carbonate membranes by template-leaching of polyethylene gly-
col in supercritical CO2 fluid. Porosity as high as 72% was
achieved; however, the pores were closed in most cases [28].
Using dimethyl sulfone and glycerol as mixed diluents, Wu et al.
were able to prepared symmetric polyacrylonitrile membranes by
the TIPS method [29]. Both cellular and needle-like pores were
obtained with size falling over the range �2–20 mm, depending
on the quenching conditions. However, pore–pore connection was
limited to the contact area only, pores were distinctive, and there
is no indication of porous channel formation.

In this research, an attempt was made to prepare such special
kind of membranes by the NIPS process. The casting solution
consisted of Elvamide (a ternary copolymer of Nylon-6, -66, and -
610), formic acid, and high molecular weight chitosan, whereas pure
water was used as the coagulant. Elvamide is largely amorphous and
is much more flexible than its constituent homopolymers [30].
Formation of porous Elvamide membranes by NIPS has been inves-
tigated previously [31]. Chitosan, serving as the pore former in the
present research, is a biodegradable and biocompatible polysacchar-
ide widely applied in bio-industry [32]. It dissolves in common protic
solvents due to protonation of the amine groups on the 2nd carbon of
the saccharide ring. Formic acid is a very good solvent for chitosan, as
is evident that only 1 wt% formic acid aqueous solution can dissolve
the polymer (MW-490,000) at room temperature. This experimental
fact renders chitosan a unique pore former for preparing macro-
porous Elvamide membranes by precipitation from water/formic acid
(non-solvent/solvent) solutions. Because chitosan will enter the
coagulation bath along with the out-diffusion formic acid during
the immersion process, no post-extraction is required to obtain pure
Elvamide membranes. Furthermore, it is interesting to find that
skinless membranes can be formed thanks to the migration of
chitosan, as opposed to common understanding that immersion-
precipitation of polyamide in a strong non-solvent, such as water,
generally gives rise to asymmetric skinned membranes [6,26,33].

By controlling the ratio of chitosan/Elvamide in the dope,
membranes with different porous structures and porosity were
obtained. The formed membranes were characterized by 1H NMR,
SEM, and tensile strength measurements. Polyamides have been
reported to possess good biocompatibility with various human cells
and tissues [34–39]. In this research, L929 cells were cultured on the
membranes to see their applicability in biotechnology.

2. Materials and methods

2.1. Materials

Elvamide 8601 (copolymer of nylon-6, -66, -610, intrinsic
viscosity¼1.761 dl/g, Mv¼56,000, rp¼1.08 g/cm3) was pur-
chased from Du Pont Engineering Polymers [30]. Chitosan
(Mv¼490000, degree of deacetylation¼84%) was purchased from
TCI Chemicals. Formic acid (Sigma-Aldrich, 98–100%) was used as

the solvent for both Elvamide and chitosan. Distilled and deio-
nized water was used as the non-solvent for precipitation of
Elvamide in the immersion process. MTS (3-[4,5dimethylthiazol-
2-yl]-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-
zolium), reagent for cell analysis, was purchased from Promega.
Formic acid-d2 (Sigma-Aldrich, 98 at% D) was used as the
D-solvent for NMR analysis. All materials were used as received.

2.2. Elvamide membrane preparation and characterization

A desired amount of pre-dried (in a vacuum oven at 80 1C for 4h)
chitosan was dissolved in formic acid at 40 1C on a roller to form a
1.7 wt% polymer solution. To this solution a specific amount (11, 13,
15, or 17 phr) of Elvamide terpolymer was added. The mixture was
blended at 45 1C until a clear homogeneous solution was obtained,
which took about 12 h. The formed solution was uniformly spread
on a glass plate using a casting knife with a clearance of 350 mm.
Following casting, the solution was immersed in a water bath

Table 1
Conditions for preparation of Elvamide membranes.

Membrane

code

Weight of materials in the

casting dope (g)

Chitosan/

Elvamide

ratio

Thickness

(mm)

Elvamide Chitosan Formic

acid

M11 11 1.7 98.3 0.155 156.177.0

M13 13 1.7 98.3 0.131 156.073.1

M15 15 1.7 98.3 0.113 179.877.1

M17 17 1.7 98.3 0.100 161.477.4 Fig. 1. SEM micrographs of the membrane M11. (a) Top surface; (b) bottom

surface; (c) cross-section.

T.-M. Don et al. / Journal of Membrane Science 415–416 (2012) 784–792 785



Author's personal copy

maintained at 10 1C. Typically, precipitation was observed upon
immersion as the membrane became turbid or opaque. It was our
experience that the development of turbidity required 5–15 s,
depending upon the preparation conditions. After the precipitation

Table 2
Properties of the prepared Elvamide membranes.

Membrane

codea

Porosity

(%)b

Mean pore diameter

(mm)

Ultimate tensile

strength (MPa)

Elongation

at break

(%)

Top Bottom

M11 82.070.5 35.676.1 29.771.5 1.0670.10 12.572.3

M13 79.670.4 29.276. 4 19.973.3 1.3370.14 14.272.8

M15 78.670.3 25.074.4 15.971.7 2.2170.15 16.071.3

M17 74.471.2 17.771.8 9.571.7 3.2570.24 16.271.8

a Membranes formed by wet-phase inversion in deionized water at 10 1C.
b Calculated based on the density of Elvamide (1.08 g/cm3) and the measured

mass and thickness of the membrane.

Fig. 2. Cross-sectional morphology of the membranes. (a) M13; (b) M15; (c) M17.

Fig. 3. Morphology of the top surface of the membrane M17.

Fig. 4. Morphologies of the bottom surface of the membranes. (a) M13 and

(b) M17.

T.-M. Don et al. / Journal of Membrane Science 415–416 (2012) 784–792786
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Fig. 5. Cross-sectional morphology of Elvamide membranes prepared without addition of chitosan. Dope polymer composition: (a) 11%; (b) 13%; (c) 15%; (d) 17%.

Fig. 6. Schematic representation of the stages of the liquid–liquid phase-separation process. (a) Nucleation; (b) micelle formation; (c) cellular pore formation; (d) liquid

nuclei and chitosan chain; (e) micelle and chitosan chain; (f) scaffold-liked structure.
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was completed (about 30 min), the nascent membrane was taken
out of the bath and washed in distilled water for at least 24 h to
remove residual formic acid in the membrane. Finally, the mem-
brane was freeze-dried to avoid collapse of pores in the membrane.
The preparation conditions for various membranes are summarized
in Table 1. A few methods were employed to characterize the
formed membranes.

(1) The porosity of the membrane was determined by the
following equation [24]:

Porosity %ð Þ ¼
Vm�Ve

Vm

� �
� 100% ð1Þ

where Vm is the bulk volume of the membrane and Ve is the
volume of the polymer. Vm was obtained by multiplying the

membrane area by its thickness (measured by a thickness
gage). Ve can be calculated by Wm/rp, where Wm is the weight
of the membrane and rp is the density of the polymer.

(2) Morphologies of the membranes were observed in top,
bottom, and cross-sectional views using a scanning electron
microscope (SEM, S-2600H, HITACHI, Japan). The membrane
was vacuum-dried and then attached to a sample holder
using conductive copper tapes. The cross section of the
membrane was obtained by fracturing the membrane in
liquid nitrogen. Silver paste was applied at the edges of the
sample to enhance electronic conductivity. Then, the sample
was sputtered with a thin layer of gold and observed under an
acceleration voltage of 10 kV.

(3) 1H NMR spectroscopy was used to see whether all chitosan
had left the membrane during the immersion-precipitation

Fig. 7. 1H NMR spectra of (a) Pure Elvamide and (b) M17.

T.-M. Don et al. / Journal of Membrane Science 415–416 (2012) 784–792788
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process. The spectra were obtained on a Bruker AC-300 FT-
NMR instrument (Germany) operated at 300 MHz. D2-formic
acid was used as the solvent for both polymers.

(4) Pore size of the membranes was determined using image
analysis software (Image J, National Institutes of Health, USA)
on SEM micrographs. The ranges of pore area and circularity
were set to 20–infinity mm2 and 0.6–1.0, respectively. For each
membrane, analyses were made on 5 different SEM micrographs
and the average value was reported together with deviations.

(5) Tensile strength and elongation at break (Shimadzu, AGS-J,
Japan) for various membranes were measured following
ASTM D638–91.

2.3. Cell culture

Mouse fibroblast-like cells (L929) were suspended in DMEM
(Gibco/Invitrogen, California, USA) and cultured in a humidified
atmosphere of 95% air and 5% CO2 at 37 1C. The medium was
renewed every 2 days. The membranes were secured in the wells
of tissue-culture treated polystyrene plates (TCPS). Subsequently,
cell suspension with a cell concentration of about 1�105/ml was
added to each well. After incubation for various periods, cells
attached on the membranes were harvested for analysis. 20 mL
MTS was pipetted into each well and incubated for 4 h at 37 1C.
The number of cells was determined based on the values of OD490

with a micro-plate spectrophotometer (ELISA, Multickan Spec-
trum, Thermo Science, UK). Furthermore, cells stained by DAPI
(diamidino-2-phenylindole) were observed using a fluorescence
microscope to see the distribution of cells on the membrane [40].

3. Results and discussion

3.1. Morphologies of the membranes

Fig. 1 shows the SEM images of the membrane M11. The membrane exhibits the

so-called lacy-like bi-continuous morphology, composed of two interwoven net-

works with one being macroporous channels of pore size �30–40 mm, and the

other being polymer matrix. As far as our knowledge is concerned, bi-continuous

morphology of such pore-size scale and pore–pore connectivity has never been

reported in the membrane literature. The top and bottom surfaces are porous with a

slight difference in pore size (cf. Table 2), which is related to the escaping activity of

chitosan during the immersion-precipitation process, as will be discussed later.

Experimentally, it is noted that the top surface is not smooth; deep troughs (some

tens of mm) are frequently observed. For example, a vertical depression of 20 mm

over the length of 130 mm can be seen in Fig. 1(c). Although a bi-continuous

Elvamide membrane has been demonstrated previously [31,41], it should be noted

that the membrane had smaller pore size and was prepared by the very slow

‘‘vapor-induced phase separation’’ process suggested by Paine [41]. For the present

immersion precipitation process (in water bath), it is impossible to form bi-

continuous structure without participation of chitosan.

The Elvamide content in the casting dope has a significant effect on the

morphology of the formed membrane, as illustrated in Figs. 2–4. Fig. 2 depicts the

cross sectional images of the membranes prepared by dopes containing 13, 15, and

17 phr of Elvamide. The membranes M13 and M15 still hold the bi-continuous

feature, while the membrane M17 loses the pore–pore continuity on the bottom

half of the cross section. The pore size is found to decrease with increasing

Elvamide content in the dope. Specifically, the pore size near the top surface of the

membrane M11 is about 30 mm; yet, it becomes 15 mm for M17. Despite such

significant difference in pore size, all membranes have a similar porosity, around

80%, suggesting that the number of pores in the membrane increases from the

membrane M11 to M17. It is also interesting to find that the top surface of the

membranes M13–M17, as opposed to M11, is smooth and free of visible

indentation or pin-holes. That is, higher Elvamide fraction helps to hold the

mechanical integrity of the membrane against possible surface rupture caused by

escaping chitosan molecules. When the Elvamide content in the dope reaches

17 phr, as shown in Fig. 2(c), the lower-half of the membrane evolves into the

closed-cell morphology typical of amorphous membranes prepared by the non-

solvent induced phase separation process [31]. Because the cellular pores are not

inter-connected, the membrane is impenetrable with respect to micron-sized

objects.

Just as the membrane M11, the top surface of the other membranes is also

porous, however, with a smaller pore size. As an example, Fig. 3 shows the top

surface view of the membrane M17. The pores are more or less circular,

evidencing the occurrence of liquid–liquid demixing event just underneath the

membrane-bath interfacial layer. The pore size distributes over the range 10–

40 mm, with an average of 18 mm, only about 1/2 of those on the top surface of the

membrane M11. This is consistent with the general observation that more

concentrated dope gives rise to smaller pore size [42–45]. Elvamide content

affects the pore size of the bottom surface with a trend similar to the top surface.

The bottom surface images of the membranes M13 and M17 in Fig. 4 illustrate this

point. The pore size of the membrane M13 is on average 20 mm, and there is good

connectivity between the pores. In contrast, the bottom surface of membrane M17

is not very porous, containing more dense regions than porous ones. If not with

Fig. 8. SEM micrographs of L929 cells cultured on Elvamide membrane surfaces. (a) M13T; (b) M17T; (c) M17B; (d) MD.

T.-M. Don et al. / Journal of Membrane Science 415–416 (2012) 784–792 789
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the small fraction of isolated pores, this surface may be termed a dense skin. In

summary, the Elvamide/chitosan ratio appears to play an important role on the

morphology of the immersion-precipitated membranes. It is crucial to have the

Elvamide content less than 15 phr, in case that highly bi-continuous porous

membrane is sought to produce.

3.2. Bi-continuous structure formation

A preliminary formation process for the bi-continuous structure is proposed

herein. To understand why incorporation of chitosan in the dope promotes pore–pore

inter-connection, it is instructive to examine the morphologies of pure Elvamide

membranes prepared without involving chitosan. Such cases are demonstrated in

Fig. 5. The casting dopes comprised 11%, 13%, 15%, or 17% Elvamide in formic acid,

and the bath was pure water. It can be seen that all the membranes possess a cellular

cross-section, typical of amorphous membranes formed from nonsolvent induced

phase separation [31]. The size of the cellular pore decreases with increasing

Elvamide concentration. The formation mechanism of the cellular morphology has

been described previously [31]. Here, it is briefly introduced, as it is related to the

formation of chitosan-induced bi-continuity in the membranes. The precipitation

process (free of chitosan) is shown schematically in Fig. 6. The liquid–liquid demixing

process begins with the nucleation of liquid domains, Fig. 6(a). These domains

(composed of water and formic acid) are enclosed in a polymer-rich concentration

boundary layer, Fig. 6(b). The encapsulated domains grow as a result of diffusional

influx of the solvent and non-solvent from the bulk solution. Radial growth of the

domains occurs and is accompanied by thickening of the amorphous polymer-rich

boundary layer. This process continues until a gelation stage is reached, at which the

polymer chains in the boundary layers touch, entangle, and then fuse into a

continuous polymer gel matrix, in which micro-drops are dispersed Fig. 6(c). [31].

Chitosan is known to interact strongly with water and formic acid through

hydrogen bondings; as is evident, chitosan/formic acid casting dope dissolves in

water bath (i.e., the casting dope disappears) soon after immersion. In other

words, during the immersion-precipitation process, chitosan tends strongly to

leave the casting solution along with the out-diffusing formic acid (the NMR

analysis proves this point). This activity interferes with the nucleation and growth

of domains. At the very start of nucleation, most chitosan chains may still be

expanded and spread uniformly in the dope solution, Fig. 6(d), where out-flux of

formic acid is limited to the top surface. As the domains grow, some chitosan

chains will enter the domains (composed of formic acid and water) just as they

migrate into the bath, which causes the polymer-rich boundary layer to break

open, Fig. 6(e). Eventually, chitosan molecules will all be leached-out, leaving

numerous connective channels between pores to yield a scaffold-like structure,

Fig. 6(f). However, it is noted that when the chitosan content is lower than a

critical value (e.g., M17), all chitosan will leave the membrane before full

development of cellular pores; especially, towards the bottom surface of the

membrane. Thus, in this region, only ordinary cellular structure is formed, and the

membrane appears like the asymmetric Elvamide membrane shown in Fig. 5(d).

Fig. 2 also indicates that the pore size of the membrane decreases gradually along

the cross-section. This further evidences the out-diffusion behavior of chitosan

during membrane formation.

3.3. Chitosan leaching analysis

Fig. 7 shows the 1H NMR spectra of the pure Elvamide polymer and the formed

porous membrane M17. The two sharp peaks at 8.3 ppm and 10.2 ppm are due to

the resonance of deuterium of formic acid-d2. With reference to the spectrum of

Nylon 66, the peaks in Fig. 7 can be assigned [46]. The NH proton resonates at the

chemical shift dE3.8 ppm. The five kinds of methylene protons (a–e) correspond

to the peaks at 1.2, 1.6, 1.7, 2.5, and 3.3 ppm. Comparing Fig. 7(a) and (b), it can be

seen that the chemical shifts of these two spectra are exactly the same. Moreover,

from the 1H NMR data of chitosan [47–52], the characteristic peaks, e.g., 2.1 ppm

for CH3 of NHAc, and 4.80 ppm for H-1 of GlcN residue, are not observed in

Fig. 7(b). Thus, it may be inferred that chitosan has been leached out completely

during the immersion-precipitation process.

3.4. Porosity and tensile strength of the membranes

The porosities of the formed membranes are listed in Table 2. For all

membranes, the porosities are exceptionally high, over the range of 74–82%,

compared with �60% for common microfiltration membranes. The porosity of the

membrane M17 is somewhat smaller than the other three membranes primarily

due to the presence of closed-cellular structure on the bottom half of the

membrane. To prepare highly porous membranes, the mechanical strength is a

major issue to account for. It is interesting to find that all the prepared membranes

have tensile strengths high enough for cell culture applications, as shown in

Table 2. This can be attributed to the inter-connectivity associated with the bi-

continuous structure. The tensile strength of the membrane M11 is 1.06 MPa, the

lowest of the four membranes, due to its high porosity and large pore size. For the

membrane M17, tensile strength as high as 3.25 MPa is achieved, which can be

attributed to the lower porosity and presence of a cellular region on the bottom

half of the membrane. As regarding the elongation at break, the same tendency as

the tensile strength is found; however, it increases with a smaller scale from M11

Fig. 9. SEM micrographs of L929 cells cultured on Elvamide membranes cross

sectional view. (a) M13T and (b) M17T.
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to M17. The porosity, pore size, and cellular structure are considered to be

responsible for this result.

3.5. Cell culture for prepared membranes

L929 cells were cultured on various membrane surfaces to see the effect of

pore size and morphology on the response of the cells. The employed surfaces

include the top surfaces of the membranes M13 and M17 (termed M13T and

M17T, respectively), the bottom surface of the membrane M17 (termed M17B),

and the surface of a dense Elvamide film (termed MD). They are chosen so as to

cover a wide range of pore size. Fig. 8 shows the SEM images of the cells cultured

on these surfaces for 4 days. It appears that L929 cells attach and proliferate well

on M17B and MD. Most of the cells on MD have grown into the shape of a spindle,

while on M17B globular cells are still observable. Out-stretching of pseudopodia is

observed on both membranes. However, quite different situation is encountered

for the cases of culturing on M13T and M17T. As indicated in Fig. 8 (a) and (b),

instead of growing on top of the surface, the cells tend to enter the porous

channels in the cross-sectional region. The close-up views in Fig. 9(a) and

(b) demonstrate clearly the adherence of the cells to the pore wall. Such clear

in-growth behavior has never been demonstrated in the literature. These cells are

of spherical shape and there is no evidence of pseudopodia extension. The size of

the cells, �10 mm, is somewhat smaller than those on M17B or MD. Thus, a

negative effect is implied for L929 to grow in a channel-like confined environment.

Also, because the cellular pores beneath the bi-continuous part of M17 are all

closed, no cell is detected in this region.

Fig. 10 depicts the cell number determined by MTS analysis over the culturing

period of 4 days. For the porous surfaces M13T and M17T, the population of cell

increases slowly, and at the end it is only about three times the initial seeded level.

In contrast, those cultured on denser surfaces M17B and MD undergo significant

number changes along the course; e.g., on the 2nd day, the cell numbers are

already slightly larger than the final cell number on M13T and M17T. This suggests

that a dense surface is more favorable for the growth of L929 cells than a porous

surface, which is consistent with previous results that osteoblastic cell prefers to

adhere to a rough/porous surface, whereas the fibroblast prefers a smooth one.

Although dense surface may be more suited to L929, the fact that cells can reside

and grow in the porous channels deserves some attention.

Fig. 11 depicts the DAPI-stained optical images of cells on various membranes

after 4 days in culture. The population of the cell agrees with the MTS data,

namely, MD4M17B4M13T�M17T. Furthermore, cells are largely separated for

culturing on M13T and M17T; yet, considerable aggregation of the cells occurs on

MD and M17B. For the former case, the cells may have entered the pores initially

and may reside at different sites in the 3-D skeleton. They grow independently,

facing geometric obstructions, to give the shape of a sphere. On the other hand, on

the denser membranes, the cells attach firmly and undergo 2-D growth with

considerable pseudopodia extension and cell proliferation.

4. Conclusion

Preparation of Elvamide membranes by the wet-phase inver-
sion method, using chitosan as a pore former, was investigated.
The formed membranes exhibit bi-continuous morphologies with
high porosities and large pore sizes that are rarely reported in the
membrane literature. By manipulating the chitosan/Elvamide
ratio in the dope, membranes with different morphologies can
be obtained. When this ratio is increased, the pore size and the
porosity of the formed membrane decrease, while the tensile
strength increases. In the extreme case, porosity as high as 82%
can be established at the chitosan/Elavamide ratio of 15.5%. As a
pore former, chitosan is completely removed from the membrane
during the precipitation process, as is validated by the 1H NMR
analysis. The biological compatibility of the prepared membranes
has also been examined via culturing of the L929 cells. The cells
are able to attach and grow in the porous channels in the
membrane cross section, however, with a lower proliferation
than those cultured on a smooth surface.
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